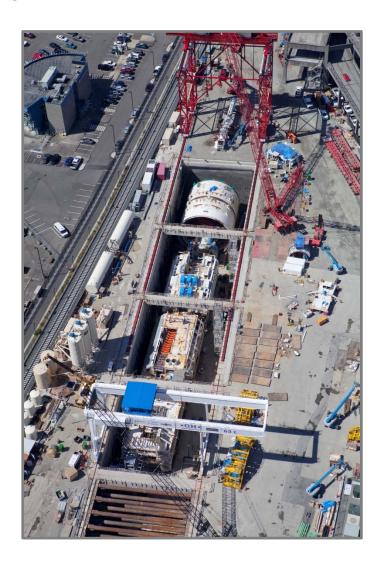
Alaskan Way Viaduct REPLACEMENT

Seattle City Council Sept. 16, 2013



Overview

- Construction update
- SR 99 tolling update:
 - Current committee work:
 Scenario 7 traffic and revenue results
 - ACTT committee's next steps
- Looking ahead

Building the New Overpass

Launched the SR 99 Tunneling Machine

Headwall Muck

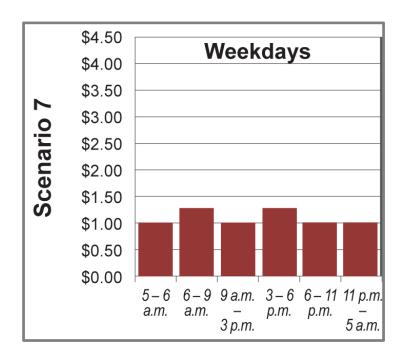
Tunnel Spoils Conveyor Belt

The SR 99 tunnel conveyor belt stretches from the launch pit to Terminal 46.

North Portal Receiving Pit

Advisory Committee on Tolling and Traffic Management

- The committee's scope was established via:
 - Federal Highway Administration-issued Record of Decision.
 - Seattle Department of Transportation and WSDOT Memorandum of Agreement.
 - City of Seattle's resolution 31323.
- The committee will make advisory recommendations on strategies for:
 - Minimizing traffic diversion from the tunnel due to tolling.
 - Tolling the SR 99 tunnel.
 - Mitigating traffic diversion effects on city streets and I-5.


Round 2 Scenarios Analyzed

- Scenario 4 (\$1.25 \$2.75): Objective is to achieve funding target.
- Scenario 5a (\$0.50 \$0.75): Objective is to reduce diversion.
 Includes toll rate escalation.
- Scenario 5b (\$1.75 peak only): Objective is to reduce diversion.
 Includes toll rate escalation.
- Scenario 6 (\$0.45 \$3): Objective is to balance funding and diversion.

Additional Modeling – Scenario 7

- Scenario 7 assumptions:
 - Balance between minimizing traffic diversion and raising revenue.
 - Includes \$1 overnight and weekend tolls.
 - Freight toll is 1.5 times the toll rate for medium trucks and 2.5 times the toll rate for large trucks.
 - Toll rate escalates 1.3% per year.

Preliminary Revenue Results for Scenarios 4 - 7

	Scenario 4 (High toll)	Scenario 5a (Low toll)	Scenario 5b (Low toll peak only)	Scenario 6 (Differenti al tolls)	Scenario 7
Revenue collected from tolls*	\$1,270	\$600	\$610	\$1,260	\$1,085
Toll collection costs**	(\$320)	(\$280)	(\$160)	(\$360)	(\$350)
Revenues after collection costs	\$950	\$320	\$450	\$900	\$735

Numbers represent estimates for approximately 30 years. Costs in millions of dollars.

^{*}After adjustments for fees, credits and uncollectible accounts. Scenarios 5a, 5b, and 7 assume 1.3 percent toll rate escalation.

^{**}Includes credit card fees and customer service center, state operations and roadway toll system costs. Could be lower with additional operational toll facilities.

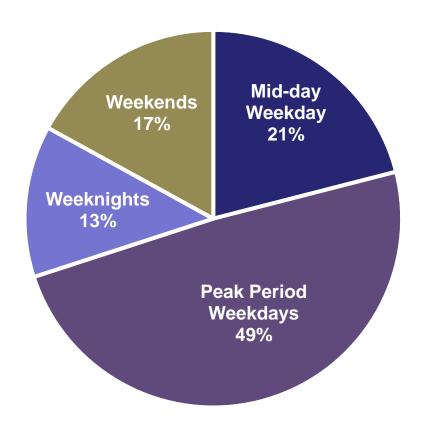
Potential Uses for Revenue

Capital Contribution*	\$200		

Costs in millions of dollars.

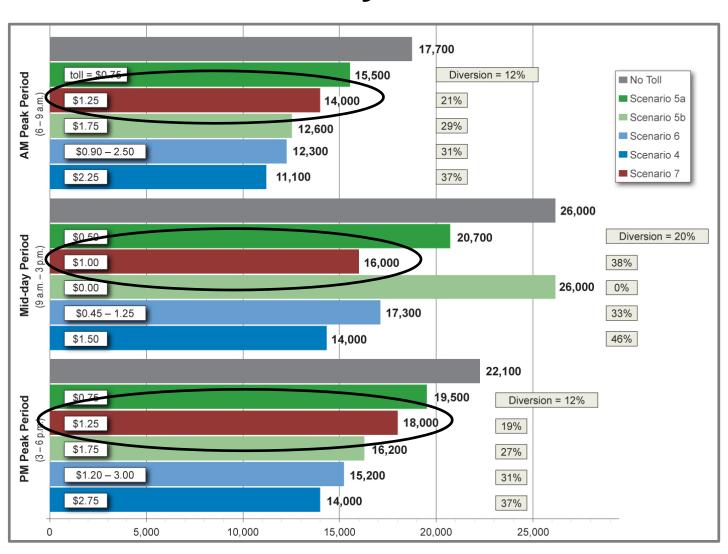
^{*}Additional costs for financing to be determined.

SR 99 Tunnel Expenses				
Operations and Maintenance	\$160			
Facility Insurance Costs**	\$55-85			
Repair and Replacement	\$190			

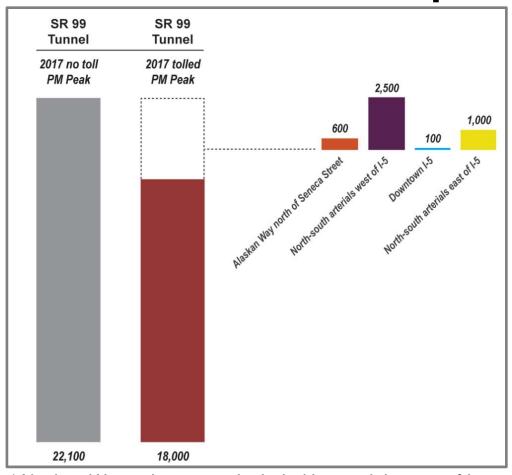

Numbers represent estimates for approximately 30 years. Costs in millions of dollars.

^{**}Variation due to coverage amounts and deductible levels.

Mitigation	TBD

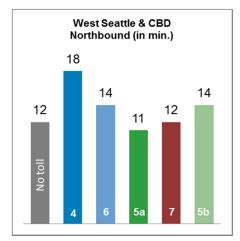

Scenario 7 Gross Toll Revenue By Time Period (2017)

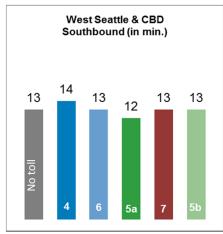
Weekend values represent a 48 hour period from 12:01 a.m. on Saturday through 11:59 p.m. on Sunday.



Scenario 7 Daytime Volumes

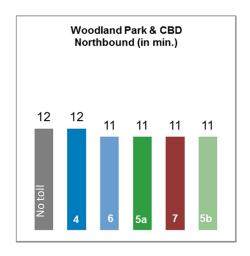
2017 Traffic Volumes by Location – Scenario 7 PM Peak Period 3 – 6 p.m.

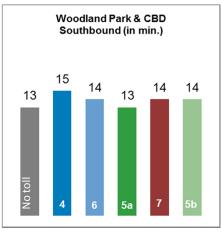

^{*}Alaskan Way volumes not included in arterials west of I-5. All volumes taken at Seneca Street.



2017 Car and Freight Travel Times PM Peak Hour 5 – 6 p.m.

West Seattle to Downtown





2017 Car and Freight Travel Times PM Peak Hour 5 – 6 p.m.

Woodland Park to Downtown

Another Look at Diversion

- Committee members asked for a metric assigning a dollar amount to the diverted traffic within the transportation system.
- Traffic models produce vehicle hours of delay which shows the number of hours travelers spend on roadways at less than optimum speeds.
- Vehicle hours of delay is inherent in any transportation system and increases over time due to growth.
- In general, vehicle hours of delay increases as toll rates increase.

Another Look at Diversion

- Traffic models produce vehicle hours of delay which shows the number of hours travelers spend on roadways at less than optimum speeds.
- Model output: Hours represent a.m. and p.m. peak periods (6 to 9 a.m. and 3 to 6 p.m.).
- Basic formula: Peak period vehicle hours of delay X 250 work days
 X \$18 per hour = estimated annual value.

	No toll	Scenario 4	Scenario 5a	Scenario 5b	Scenario 6	Scenario 7
2017 estimated peak period hours	36,600	44,600	38,000	39,800	42,900	40,000
2017 estimated annual peak period hours	9,150,000	11,150,000	9,500,000	9,950,000	10,725,000	10,000,000
Estimated annual value (hourly value of \$18)	\$165 million	\$201 million	\$171 million	\$179 million	\$193 million	\$180 million

System Improvement Strategies To Consider With Tolled SR 99 Tunnel

- Freight movement priority to/from Port facilities and between manufacturing and industrial centers (including I-5).
- Signal and intelligent transportation system improvements including adaptive signal control.
- Bicycle improvements in downtown.
- Pedestrian improvements near the tunnel portal areas.
- Transit service and pathways into downtown.

ACTT Next Steps

- Further discuss:
 - The transportation system approach to minimizing and mitigating diversion.
 - Committee recommendations.
- Scheduled ACTT committee meetings:
 - September 25
 - October 30

Looking Ahead

- Expert Review Panel will reconvene this fall.
- North Access Project contract will be advertised this fall.
- Tunneling in a controlled environment: through fall 2013.
- Tunnel under the viaduct: this winter.
- South Atlantic Overpass: open to traffic end of 2013.

Inside the SR 99 tunneling machine control room.

Website:

www.AlaskanWayViaduct.org

Twitter:

@BerthaDigsSR99

Email:

viaduct@wsdot.wa.gov

Hotline:

1-888-AWV-LINE

